Департамент образования Администрации города Екатеринбурга Муниципальное автономное общеобразовательное учреждение – средняя общеобразовательная школа № 168

620102 г. Екатеринбург, ул. Серафимы Дерябиной, д. 27а, телефон-факс (343) 233-40-81 e-mail: soch168@eduekb.ru ИНН/КПП 6658066139/665801001 ОКПО 41746036

УТВЕРЖДЕНО Приказом директора № 01-01-11/39 от 30.08.2024г. Вступают в силу с 01.09.2024г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Теория алгоритмов» 11 класс

Составители: Бажова О.В., учитель информатики, ВКК

Пояснительная записка

Программа учебного предмета «Теория алгоритмов» разработана для учащихся 11 класса технологического профиля.

Программа раскрывает взаимосвязь математики и информатики, дает возможность учащимся как отработать базовые алгоритмические конструкции, так и получить опыт решения сложных типов алгоритмических задач.

Данная программа ориентирована на школьников, имеющих базовую подготовку по информатике, желающих расширить свои знания о теории алгоритмов. Программа способствует реализации индивидуальных образовательных интересов, потребностей и склонностей учащихся, определения выбора будущей профессии.

Цель преподавания курса «Теория алгоритмов» для учеников 11 класса состоит в том, чтобы помочь учащимся развить понимание основных понятий и принципов алгоритмов, их реализацию и применение в решении задач различной сложности.

Задачи курса включают:

- Изучение основных понятий и определений в области алгоритмов.
- Ознакомление с классическими алгоритмами и структурами данных.
- Разработка навыков анализа эффективности алгоритмов и оценки их сложности.
- Практическое применение изученных знаний при решении задач на программирование.
- Знакомство с современными технологиями и применение алгоритмов в различных областях жизни.

Для достижения поставленных целей и задач в курсе будут использоваться разнообразные методы обучения, такие как лекции, практические задания, самостоятельное изучение материала, а также работу с учебной литературой и онлайнресурсами. Особое внимание будет уделено развитию у учеников логического мышления, а также навыков работы с алгоритмами и структурами данных.

Программа рассчитана на 1 год обучения. Объем программы 34 часа по 1 часу в неделю.

Содержание программы

11 класс

Знакомство с алгоритмами.

Введение в алгоритмы. Эффективность алгоритмов. Алгоритм бинарного поиска. Время выполнения алгоритма. Асимптотическая сложность алгоритма. «О-большое». Анализ сложности алгоритмов.

Рекурсия и методы сортировки.

Основные структуры данных: массивы и связанные списки. Как работает память. Операции с массивами и связанными списками. Сортировка выбором. Уменьшение количества проверяемых элементов.

Рекурсия: базовый и рекурсивный случай. Стек как структура данных LIFO («последним пришел, первым вышел»). Стек вызовов. Стек вызовов с рекурсией. Стратегия «Разделяй и властвуй». Алгоритмы сортировки слиянием и быстрой сортировки.

Хэш-таблицы, шаблонный поиск

Хэш-функции. Использование хэш-таблиц для поиска. Исключение дубликатов. Использование хэш-таблицы как кэша. Область применения хэш-таблиц.

Графы, алгоритм Дейкстры

Граф как структура данных. Алгоритм поиска в ширину (путь с минимальным количеством сегментов в невзвешенном графе). Очередь как структура данных FIFO («первым вошел, первым вышел»). Реализация графа на языке Python. Взвешенные графы. Алгоритм Дейкстры (алгоритм поиска кратчайшего пути во взвешенном графе). Ребра с отрицательным весом. Алгоритм Беллмана-Форда.

Жадные алгоритмы, динамическое программирование

Понятие «жадного алгоритма» (локально-оптимальное решение) и его применение в решении задач. Задачи, не имеющие быстрого алгоритмического решения (NP-полные задачи). Алгоритмы нахождения приближенного решения. Признаки задачи, не имеющей быстрого алгоритмического решения.

Динамическое программирование как метод решения задач оптимизации.

Алгоритм к-ближайших соседей

Системы классификации на базе алгоритма к-ближайших соседей. Извлечение признаков.

Регрессия. Знакомство с машинным обучением. OCR (оптическое распознавание текста). Построение спам-фильтра.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты отражают готовность И способность обучающихся руководствоваться сформированной внутренней позицией личности, системой внутренних убеждений, соответствующих ценностных ориентаций, позитивных традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации средствами учебного предмета основных направлений воспитательной деятельности. В результате изучения информатики на уровне среднего общего образования у обучающегося будут сформированы следующие личностные результаты:

- 1) гражданского воспитания: осознание своих конституционных прав и обязанностей, уважение закона и правопорядка, соблюдение основополагающих норм информационного права и информационной безопасности; готовность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам в виртуальном пространстве;
- 2) патриотического воспитания: ценностное отношение к историческому наследию, достижениям России в науке, искусстве, технологиях, понимание значения информатики как науки в жизни современного общества;
- 3) духовно-нравственного воспитания: сформированность нравственного сознания, этического поведения; способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в сети Интернет;
- 4) эстетического воспитания: эстетическое отношение к миру, включая эстетику научного и технического творчества; способность воспринимать различные виды искусства, в том числе основанного на использовании информационных технологий;
- 5) физического воспитания: сформированность здорового и безопасного образа жизни, ответственного отношения к своему здоровью, в том числе за счёт соблюдения требований безопасной эксплуатации средств информационных и коммуникационных технологий;
- 6) трудового воспитания: готовность к активной деятельности технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такую деятельность; интерес к сферам профессиональной деятельности,

связанным с информатикой, программированием и информационными технологиями, основанными на достижениях науки информатики и научно-технического прогресса, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовность и способность к образованию и самообразованию на протяжении всей жизни;

- 7) экологического воспитания: осознание глобального характера экологических проблем и путей их решения, в том числе с учётом возможностей информационно-коммуникационных технологий;
- 8) ценности научного познания: сформированность мировоззрения, соответствующего современному уровню развития науки, достижениям научно-технического прогресса и общественной практики, за счёт понимания роли информационных ресурсов, информационных процессов и информационных технологий в условиях цифровой трансформации многих сфер жизни современного общества; осознание ценности научной деятельности, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

В процессе достижения личностных результатов освоения программы по информатике у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность: саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому; внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей; эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении коммуникации, способность к сочувствию и сопереживанию; социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В результате изучения курса на уровне среднего общего образования у обучающегося будут сформированы метапредметные результаты, отраженные в универсальных учебных действиях, а именно — познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, регулятивные универсальные учебные действия, совместная деятельность.

Познавательные универсальные учебные действия

1) базовые логические действия: самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне; устанавливать существенный признак или

основания для сравнения, классификации и обобщения; определять цели деятельности, задавать параметры и критерии их достижения; выявлять закономерности и противоречия в рассматриваемых явлениях; разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов; вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности; координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия; развивать креативное мышление при решении жизненных проблем.

- 2) базовые исследовательские действия: владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем, способностью и готовностью к самостоятельному поиску методов решения практических задач, применению различных методов познания; осуществлять различные виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных и социальных проектов; формировать научный тип мышления, владеть научной терминологией, ключевыми понятиями и методами; ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях; выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения; анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях; давать оценку новым ситуациям, оценивать приобретённый опыт; осуществлять целенаправленный поиск переноса средств и способов действия в профессиональную среду; уметь переносить знания в познавательную и практическую области жизнедеятельности; уметь интегрировать знания из разных предметных областей; выдвигать новые идеи, предлагать оригинальные подходы и решения, ставить проблемы и задачи, допускающие альтернативные решения.
- 3) работа с информацией: владеть навыками получения информации из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления; создавать тексты в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации; оценивать достоверность, легитимность информации, её соответствие правовым и морально-этическим нормам; использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических

норм, норм информационной безопасности; владеть навыками распознавания и защиты информации, информационной безопасности личности.

Коммуникативные универсальные учебные действия

- 1) общение: осуществлять коммуникации во всех сферах жизни; распознавать невербальные средства общения, понимать значение социальных знаков, распознавать предпосылки конфликтных ситуаций и смягчать конфликты; владеть различными способами общения и взаимодействия, аргументированно вести диалог, уметь смягчать конфликтные ситуации; развёрнуто и логично излагать свою точку зрения с использованием языковых средств.
- 2) совместная деятельность: понимать и использовать преимущества командной и индивидуальной работы; выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива; принимать цели совместной деятельности, организовывать и координировать действия по их достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы; оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям; предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости; осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия

- 1) самоорганизация: самостоятельно осуществлять познавательную деятельность, выявлять проблемы, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях; самостоятельно составлять план решения проблемы с учётом имеющихся ресурсов, собственных возможностей и предпочтений; давать оценку новым ситуациям; расширять рамки учебного предмета на основе личных предпочтений; делать осознанный выбор, аргументировать его, брать ответственность за решение; оценивать приобретённый опыт; способствовать формированию и проявлению широкой эрудиции в разных областях знаний, постоянно повышать свой образовательный и культурный уровень.
- 2) самоконтроль: давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям; владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, использовать приёмы рефлексии для оценки ситуации, выбора верного решения; оценивать риски и своевременно принимать решения по их снижению; принимать мотивы и аргументы других при анализе результатов деятельности.

3) принятия себя и других: принимать себя, понимая свои недостатки и достоинства; принимать мотивы и аргументы других при анализе результатов деятельности; признавать своё право и право других на ошибку; развивать способность понимать мир с позиции другого человека.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. Основные предметные результаты отражают:

- формирование информационной и алгоритмической культуры;
- формирование представления об основных изучаемых понятиях: информация, алгоритм,
 модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях,
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей, с использованием соответствующих программных средств обработки данных;
- освоение методов теории алгоритмов, алгоритмизации и оптимизации алгоритмов.

Тематическое планирование

Номер	Название темы	Кол-во	теория	практика	
темы		часов			
11 класс					
1.	Знакомство с алгоритмами	3	1	2	
2.	Рекурсия и методы сортировки	8	2	6	
3.	Хэш-таблицы, шаблонный поиск	3	1	2	
4.	Графы, алгоритм Дейкстры	8	2	6	
5.	Жадные алгоритмы, динамическое программирование	8	2	6	
6.	Алгоритм к-ближайших соседей	4	2	2	
	Итого	34	10	24	

Поурочное планирование

11класс (34 часа)

№	Тема разделов, занятий	Количество часов		
		Количество часов	Теория	Практика
	Знакомство с алгоритмами	3	1	2
1.	Введение в алгоритмы. Эффективность алгоритмов. Алгоритм бинарного поиска	1	1	
2.	Время выполнения алгоритма. Асимптотическая сложность алгоритма «О-большое». Анализ сложности алгоритмов	1		1
3.	Практикум по решению задач	1		1
	Рекурсия и методы сортировки	8	2	6
4.	Основные структуры данных: массивы и связанные списки. Как работает память	1	1	
5.	Операции с массивами и связанными списками	1		1
6.	Сортировка выбором. Уменьшение количества проверяемых элементов	1		1
7.	Рекурсия: базовый и рекурсивный случай. Стек как структура данных LIFO («последним пришел, первым вышел»)	1	1	
8.	Стек вызовов. Стек вызовов с рекурсией	1		1
9.	Стратегия «Разделяй и властвуй». Алгоритмы сортировки слиянием и быстрой сортировки	1		1
10.	Практикум по решению задач	1		1
11.	Практикум по решению задач	1		1
	Хэш-таблицы, шаблонный поиск	3	1	2
12.	Хэш-функции. Использование хэш-таблиц для поиска	1	1	

13.	Исключение дубликатов. Использование хэш-таблицы как кэша. Область применения хэш-таблиц	1		1
14.	Практикум по решению задач	1		1
	Графы, алгоритм Дейкстры	8	2	6
15.	Граф как структура данных	1	1	
16.	Алгоритм поиска в ширину (путь с минимальным количеством сегментов в невзвешенном графе)	1		1
17.	Очередь как структура данных FIFO («первым вошел, первым вышел»). Реализация графа на языке Python	1		1
18.	Взвешенные графы. Алгоритм Дейкстры (алгоритм поиска кратчайшего пути во взвешенном графе)	1	1	
19.	Практикум по решению задач	1		1
20.	Практикум по решению задач	1		1
21.	Ребра с отрицательным весом. Алгоритм Беллмана-Форда	1		1
22.	Практикум по решению задач	1		1
	Жадные алгоритмы, динамическое программирование	8	2	6
23.	Понятие «жадного алгоритма» (локально-оптимальное решение) и его применение в решении задач	1	1	
24.	Задачи, не имеющие быстрого алгоритмического решения (NP-полные задачи)	1		1
25.	Алгоритмы нахождения приближенного решения. Признаки задачи, не имеющей быстрого алгоритмического решения	1		1
26.	Практикум по решению задач	1		1
27.	Динамическое программирование как метод решения задач оптимизации	1	1	

28.	Практикум по решению задач	1		1
29.	Практикум по решению задач	1		1
30.	Практикум по решению задач	1		1
	Алгоритм k-ближайших соседей	4	2	2
31.	Системы классификации на базе алгоритма k-ближайших соседей. Извлечение признаков. Регрессия.	1	1	
32.	Практикум по решению задач	1		1
33.	Знакомство с машинным обучением. OCR (оптическое распознавание текста). Построение спам-фильтра.	1	1	
34.	Практикум по решению задач	1		1

Литература

- Информтаика (базовый и углубленный уровни) (в 2 частях) 11класс /К.Ю. Поляков и др. – М.: Бином. Лаборатория знаний, 2019)
- **2.** Информтаика (базовый и углубленный уровни) (в 2 частях) 10класс /К.Ю. Поляков и др. М.: Бином. Лаборатория знаний, 2019)
- **3.** Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих. СПБ.: Питер, 2024 (Серия «Библиотека программиста»)

Список ЭОР

- 1. Официальный сайт Федерального института педагогических измерений http://www.fipi.ru/
- 2. Преподавание, наука и жизнь: сайт К. Полякова http://kpolyakov.spb.ru/
- 3. Библиотека ЦОК https://m.edsoo.ru/
- 4. Российская электронная школа https://resh.edu.ru/subject/19/10/
- 5. Яндекс.Учебник https://education.yandex.ru

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 208044408491059958793522407239734469317027884120

Владелец Вяткина Татьяна Олеговна

Действителен С 29.08.2024 по 29.08.2025